Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Wang Xue-jie

Wang Xue-jie

Zhejiang International Studies University, China

Title: Thermal decomposition mechanism and kinetics of tenoxicam

Biography

Biography: Wang Xue-jie

Abstract

Tenoxicam (TNX) is a non-steroidal anti-inflammatory drug. Its thermal decomposition processes were studied with thermogravimetry and differential scanning calorimetry. The produced gaseous products and residues during decomposition were detected and characterized using Fourier transform infrared spectroscopy. Combining with the molecular bond order distribution obtained from the quantum chemistry calculation, the thermal decomposition mechanism of TNX has been speculated. The kinetic parameters for thermal decomposition, such as activation energy Eα and the pre-exponential factor A, were obtained using the ATSM E1641 method. The prospective lifetime of TNX was estimated using the ATSM E1877 method. The results indicated that the thermal decomposition of TNX is a three-stage process. During the first stage of thermal decomposition, the main part of the molecule, including sulfamide, thiophene and amide, decompose simultaneously, and to form gasifiable small molecules and carbonized residues. The initial decomposition temperature in either nitrogen or air is about 204 °C. For decomposition in nitrogen, the Eα and A for the initial thermal decomposition are 174.8 kJ mol-1 and 2.512 × 1017 min-1, respectively. For decomposition in air, the corresponding Eα and A are 179.4 kJ mol-1 and 7.943 × 1017 min-1, respectively. The TNX has good thermal stability under routine temperature.